Biliary cholesterol crystallization characterized by single-crystal cryogenic electron diffraction.
نویسندگان
چکیده
Cholesterol crystals are the building blocks of cholesterol gallstones. The exact structure of early-forming crystals is still controversial. We combined cryogenic-temperature transmission electron microscopy with cryogenic-temperature electron diffraction to sequentially study crystal development and structure in nucleating model and native gallbladder biles. The growth and long-term stability of classic cholesterol monohydrate (ChM) crystals in native and model biles was determined. In solutions of model bile with low phospholipid-to-cholesterol ratio, electron diffraction provided direct proof of a novel transient polymorph that had an elongated habit and unit cell parameters differing from those of classic triclinic ChM. This crystal is exactly the monoclinic ChM phase described by Solomonov and coworkers (Biophysical J., In press) in cholesterol monolayers compressed on the air-water interface. We observed no evidence of anhydrous cholesterol crystallization in any of the biles studied. In conclusion, classic ChM is the predominant and stable form in native and model biles. However, under certain (low phospholipid) conditions, transient intermediate polymorphs may form. These findings, documenting single-crystal analysis in bulk solution, provide an experimental approach to investigating factors influencing biliary cholesterol crystal nucleation and growth as well as other processes of nucleation and crystallization in liquid systems.
منابع مشابه
Imaging and Monitoring Cholesterol Crystallization in Bile
Characterizing the microstructural evolution of lipid aggregates and precipitates in lithogenic bile is pivotal for understanding the process of cholesterol crystallization, leading to cholesterol gallstone formation. We have studied cholesterol precipitation in bile models and in human bile samples by the combined use of lightand cryotransmission electron microscopy with density gradient separ...
متن کاملFilamentous, helical, and tubular microstructures during cholesterol crystallization from bile. Evidence that cholesterol does not nucleate classic monohydrate plates.
Precipitation of cholesterol in gallbladder bile is believed to produce platelike cholesterol monohydrate crystals directly. We report complementary time-lapse microscopic studies of cholesterol crystallization from model bile that reveal initial assembly of filamentous cholesterol crystals covered by a monomolecular layer of lecithin. Over a few days, the filaments evolved through needle, heli...
متن کاملNo pathophysiologic relationship of soluble biliary proteins to cholesterol crystallization in human bile.
This study explores the pathophysiologic effects of soluble biliary glycoproteins in comparison to mucin gel and cholesterol content on microscopic crystal and liquid crystal detection times as well as crystallization sequences in lithogenic human biles incubated at 37 degrees C. Gallbladder biles from 13 cholesterol gallstone patients were ultracentrifuged and microfiltered (samples I). Total ...
متن کاملLess hydrophobic phosphatidylcholine species simplify biliary vesicle morphology, but induce bile metastability with a broad spectrum of crystal forms.
Cholesterol crystallization in bile is affected by phosphatidylcholine (PtdCho) hydrophobicity. The aim of the present study was to determine whether PtdCho species modulate the metastable-labile limit and equilibrium solubility of cholesterol in the micellar phase of bile, thereby altering the distribution of cholesterol to biliary lipid carriers and thus influencing cholesterol crystallizatio...
متن کاملPhospholipid molecular species influence crystal habits and transition sequences of metastable intermediates during cholesterol crystallization from bile salt-rich model bile.
Despite its importance in cholesterol gallstone formation, crystallization of cholesterol from bile is poorly understood, especially with respect to the influences of other biliary lipids. We reported recently (Konikoff et al. J. Clin. Invest. 1992. 90: 1155-1160) that cholesterol can crystallize from model and native biles as filamentous crystals covered by a surface layer of lecithin molecule...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of lipid research
دوره 46 5 شماره
صفحات -
تاریخ انتشار 2005